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The palladium-catalyzed elimination of the bicyclic cis-ace-
tate 1b using Pd catalyst and (R)-p-Tol BINAP gave the (S)-di-
ene 2 with 58% ee. Bicyclic �3-allylpalladium complex 3a with
(R)-p-Tol BINAP, considered as an intermediate in the catalytic
reaction from 1b, was prepared. Enantioselectivity in decompo-
sition of 3a is dependent on the reaction conditions. The thermal
decomposition of 3a without base gave the (S)-2 with 70% ee.
However, the decomposition of 3a in the presence of excess base
gave (R)-2 with 58% ee. Syn elimination from 3a was found
to proceed preferentially from the decomposition results of the
deuterium-labeled complexes.

Asymmetric allylic alkylation catalyzed by palladium com-
plexes bearing chiral ligands is a useful synthetic method. The
direction of nucleophilic attack caused by the desymmerrization
of allylic moiety by the coordination of chiral ligands is ex-
plained.1 Although numerous studies of the palladium-catalyzed
allylic alkylation have appeared, enantioselective elimination
from allylic compounds to optically active 1,3-dienes has scarce-
ly been explored.2 Several years ago, we reported that the reac-
tion of bicyclic trans-allylic carbonate 1a in the presence of cat-
alytic amounts of [(1-Me-allyl)PdCl]2 and (R)-BINAP gave the
bicyclic diene (S)-2 with 86% ee (Scheme 1).3 In our continuous
studies, the catalytic reaction was carried out using 1b under
similar conditions as 1a to give the same S isomer 2 in 58%
ee. The same stereochemical outcome from the opposite config-
uration of starting allylic substrates suggests that equilibration of
�3-allylpalladium intermediate proceeded prior to the elimina-
tion as shown in Scheme 1. In order to elucidate the intermediate
of the enantioselective elimination reactions, we have prepared
{Pd(�3-C11H17)[(R)-p-Tol BINAP]}PF6 complex 3a, and de-
composition reaction of 3a was investigated to gain insight into
precise mechanisms of the elimination reactions.

At first the bicyclic �3-allylpalladium complexes, which
correspond to the trans-�3-allylpalladium intermediate obtained
directly from 1b, were prepared. Treatment of the complex 54

with the diphosphine ligands, (R)-p-Tol BINAP or Dppp, and

AgPF6 in CH2Cl2 at room temperature to give 3a (73% yield)
or 3b (80% yield), respectively, after recrystallization from a
mixture of hexane–CH2Cl2 (Scheme 2). The NMR spectrum
of 3a shows unsymmetrical feature of the allylic moiety in the
complex 3a, although that of the complex 3b with achiral phos-
phine has CS symmetrical structure.6

The decomposition of 3a was carried out under various con-
ditions. As shown in Table 1, the enantioselection and enantio-
selectivity were dependent on the reaction conditions. The ther-
mal decomposition of 3a at 100 �C in 1,4-dioxane without a base
and an additive gave the (S)-diene 2 in 79% yield with low enan-
tioselectivity (18% ee). When LiCl was added, the elimination
proceeded with high enantioselectivity to give (S)-2 (70% ee,
85% yield). Interestingly when one equivalent of Et3N was add-
ed, the opposite enantiomer (R)-2 was obtained but low enantio-
selectivity (8% ee). Furthermore, when excess Et3N (10 equiv.)
was used, the decomposition proceeded smoothly to give (R)-2
with considerable enantioselectivity (58% ee, 92% yield).
Although 3a was one of plausible intermediates from 1b, the
stereochemical results of the decomposition of 3a using Et3N
were not in accordance with the enantioselection for (S)-2 in
the catalytic reaction starting with 1b.

Takacs and co-workers reported the palladium-catalyzed
elimination of allylic compounds proceeded via specific base-
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Scheme 1. Palladium-catalyzed enantioselective elimination of
bicyclic allylic compounds 1a and 1b.3
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Scheme 2. Synthesis of [Pd(�3-C11H17)(diphosphine)]PF6. Re-
agents and conditions: (a) PdCl2(PhCN)2, CHCl3, reflux, 23%
(b) diphosphine, AgPF6, CH2Cl2, 73% (for 3a), 80% (for 3b).

Table 1. Thermal decomposition of complex 3a5

3a

(S)-2 (R)-2

Base
Additive

1,4-Dioxane, 100 oC
+

Entry
Base
/equiv.

Additive
/equiv.

Time
/h

Yield/%a ee/%b

1 4 79 18 (S)
2 LiCl (10) 0.4 85 70 (S)
3 Et3N (1) 6 76 8 (R)
4 Et3N (10) 1 92 58 (R)
5 Et3N (10) LiCl (10) 18 58 8 (S)

aIsolated yield. bEnantiomeric excess was determined by
GLC using a chiral column.
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promoted anti elimination of Pd–H from the �3-allylpalladium
intermediate.7 However, stereochemical studies using character-
ized �3-allylpalladium complexes relevant to the catalytic reac-
tion have not been reported. We carried out the elimination of 1b
using 1:4 [(1-Me-allyl)PdCl]2:(R)-p-Tol BINAP catalyst, and
(S)-2 was obtained mainly in all cases (Table 2). The reaction
was very slow without a base, however, high enantioselectivity
was obtained (Entry 1; 89% ee). When the reaction was carried
out adding K2CO3, the reaction proceeded smoothly, however,
the enantioselectivity decreased (31% ee, 77% yield). When
Et3N was used instead of K2CO3, the yield of 2 decreased, but
the enantioselectivity increased (58% ee, 48% yield). Further-
more when LiCl was added, the reaction proceeded smoothly
to give (S)-2 with high enantioselectivity (78% ee, 91% yield).8

It is noteworthy that the (S) isomer formed as a major product in
each catalytic reaction of 1b, evenwhen Et3N was used, whereas
(R)-2 was obtained in the decomposition of 3a (Entry 4 in
Table 1).

In order to elicit direct evidence for the involvement wheth-
er syn or anti elimination of Pd–H occurs from the �3-allylpalla-
dium intermediates, we prepared the deuterium-labeled �3-allyl-
palladium complexes with (R)- or (S)-p-Tol BINAP, 3aa, 3ab,
and 3ac, from the 2� or 2� duterio-1-octalin, (R)-2�-d-4a and
(R)-2�-d-4b. Decomposition of 3aa was carried out under sim-
ilar conditions as shown in Table 3.9 The ratio of 2a:2b was
10:48, which indicates that the syn H(D) to palladium atom
was picked up preferentially. The elimination was also examined
with 3ab, and the same syn:anti elimination ratio was ob-
served.10 These results indicated that the isotope effects were

considered to be very small, which is in accordance with small
kinetic isotopic effects in �-hydride elimination.11 Furthermore,
when the reaction of 3ac was carried out with LiCl, syn elimina-
tion proceeded predominantly. In the reaction under conditions
in Table 3, syn elimination is preferential from the �3-allylpalla-
dium complexes, although the catalytic reaction is known to
proceed with anti elimination.

In conclusion, the palladium-catalyzed elimination reaction
of 1b was carried out smoothly with Et3N and LiCl to give (S)-2
with high enantiomeric excess. Enantioselection in decomposi-
tion of �3-allylpalladium complexes 3a with Et3N was opposed
to that without the base. The decomposition of 3a took place
in syn elimination pathway with or without a base (Scheme 3).
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Table 2. Catalytic elimination reaction of (�)-1b5

[(1-Me-allyl)PdCl]2 (2.5 mol %)
(R)-p-Tol BINAP (10 mol %)

Base (1 equiv.)
1,4-Dioxane, 100 oCOAc

(±)-1b (S)-2

Entry Base Time/h Yield/%a % eeb

1 6 27 89
2 K2CO3 4 77 31
3 Et3N 22 48 58
4c Et3N 4 91 78

aIsolated yield. bEnantiomeric excess was determined by
GLC using a chiral column. cAn equivalent of LiCl was
added.

Table 3. Decomposition of complexes 3aa, 3ab, and 3ac

Additive (1 equiv.)

1,4-Dioxane
100 oCPd+

L L
H

H
R

R1
DR2

+

PF6
-

2a: R2 = D
2b: R2 = H 

2c

3aa: R = H, R1 = D, L = (R)-p-Tol BINAP 
3ab: R = D, R1 = H, L = (R)-p-Tol BINAP 
3ac: R = D, R1 = H, L = (S)-p-Tol BINAP 

Entry Substrate Additive Time/h Yield/%a 2a/2b/2cb

1 3aa Et3N 1 68 10:48:42
2 3ab Et3N 1 60 48:10:42
3 3ac LiCl 0.5 99 61:8:31

aIsolated yield. bThe ratio of 2a:2b:2c was caluculated by
1HNMR spectra and GLC using a chiral column.
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Scheme 3. The relationship between the direction and reaction
conitions in the elimination of Pd–H from 3a to (S)- or (R)-2.
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